›› 2012, Vol. 32 ›› Issue (1): 1-7.doi: 10.3780/j.issn.1000-758X.2012.01.001

• 研究探讨 •    下一篇

基于B平面的火星探测直接转移轨道设计方法

 赵国强, 宝音贺西, 李俊峰   

  1. (清华大学航天航空学院,北京100084)
  • 收稿日期:2011-05-05 修回日期:2012-02-25 出版日期:2012-02-25 发布日期:2012-02-25
  • 作者简介:赵国强 1984年生,2011年获清华大学航空宇航科学与技术专业硕士学位。研究方向为深空探测轨道设计与优化。
  • 基金资助:

    国家自然科学基金(10832004,11072122)资助项目

DirectTransferTrajectoryDesignforMarsExplorationUsingB-plane

 ZHAO  Guo-Qiang, BAO  Yin-He-Xi, LI  Jun-Feng   

  1. (SchoolofAerospaceEngineering,Tsinghua University,Beijing100084)
  • Received:2011-05-05 Revised:2012-02-25 Online:2012-02-25 Published:2012-02-25

摘要: 将轨道设计转化为常微分方程两点边值(TPBVP)问题,采用微分修正法求解该边值问题。将B平面概念同时应用于地球和火星,借助B平面与双曲线轨道的几何关系解析地给出了两点边值问题的边界条件的建立方法,理论上说明了火星探测直接转移轨道存在4组解的原因,同时提出了控制探测器到达相对火星双曲线轨道近火点时刻的准确参数表示方法。最终给出仿真算例,将轨道设计结果代入STK,结果合理。

关键词: 火星探测, 轨道设计, 微分修正, B平面参数

Abstract: The trajectory design problem was transformed into two point boundary value problem (TPBVP) of ordinary differential equation and solved by differential correction. The  concept of B-plane was used nea earth and Mars. The boundary condition of the TPBVP can be analytically determined by the geometrical characteristics between B-plane and its associatedhyperbolic orbit, and the reason that four kinds of trajectories can be obtained was explained. An accurate mathematical formulation describing the closest approach time to Marswas also proposed. An illustrative example was presented and the results were coincided with satellite tool kit.

Key words: Mars exploration, Trajectory design, Differential correction, B-plane parameters