›› 2011, Vol. 31 ›› Issue (3): 1-7.doi: 10.3780.j.issn.1000-758X.2011.03.001

• 研究探讨 • 上一篇    下一篇


李冬1, 易冬云1, 程洪玮2   

  1. (1 国防科学技术大学数学与系统科学系, 长沙 410073) (2 北京跟踪与通信技术研究所, 北京 100094)
  • 收稿日期:2010-11-25 修回日期:2010-12-20 出版日期:2011-06-25 发布日期:2011-06-25
  • 作者简介:李冬 1983年生,2008年获国防科学技术大学系统科学专业硕士学位,现为国防科学技术大学理学院博士研究生,研究方向为系统分析与集成。
  • 基金资助:


Orbit Determination for GEO Objects with Short Arcs ofSpaceBased Optical Observations

LI  Dong1, YI  Dong-Yun1, CHENG  Hong-Wei2   

  1. 1 Department of Mathematics and Systems Science,National University of Defense Technology, Changsha 410073)(2 Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094)
  • Received:2010-11-25 Revised:2010-12-20 Online:2011-06-25 Published:2011-06-25

摘要: 利用两个短弧段的天基测角资料实现对GEO空间目标的轨道确定是天基空间目标监视系统需解决的重要问题之一。将短弧段的主要测量信息表示为弧段属性,构造约束空间目标距离和径向速度的容许域,采用桁架平衡法对第一个短弧段的容许域三角剖分采样,以这些采样点的轨道预报第二个短弧段的弧段属性,通过分析预报值与实际值的差异,优先选取多个采样点的轨道作为初轨,分别对各初轨进行轨道改进。仿真结果表明,该方法能成功解算最小二乘轨道。

关键词: 桁架平衡法, 采样法, 最小二乘轨道, 轨道确定, 空间目标, 地球同步轨道

Abstract: Orbit determination for GEO objects using two short arcs from space based optical observations plays a key role in the space-based space surveillance systems. The significant information of a short arc was represented by an attributable including two angles and their time derivatives at the mean time. The admissible region was constructed to constrain the distance and the radial velocity between the surveillance satellite and the GEO object. Using the force equilibrium of a truss structure, the admissible region of the first arc was sampled by triangulation. The orbits of these samples were propagated to predict the attribute of the second arc. By comparing the predicted attribute with the actual one, several proper preliminary orbits were determined for orbit improvement. The simulation results show that our method can successfully achieve the least square solution and indicate the excellent convergence behavior.

Key words: Short arc, Truss equilibrium method, Sampling method, Least-square orbit, Orbit determination, Space object, Geosynchronous earth orbit