›› 2017, Vol. 37 ›› Issue (2): 93-100.doi: 10.16708/j.cnki.1000-758X.2017.0016

• 技术交流 • 上一篇    下一篇

漏极注入HPM对高电子迁移率晶体管的损伤机理

 薛沛雯, 方进勇, 李志鹏, 孙静*   

  1. 中国空间技术研究院西安分院,西安710100
  • 收稿日期:2016-10-25 修回日期:2016-11-30 出版日期:2017-06-25 发布日期:2017-01-24
  • 作者简介:薛沛雯(1992-),女,硕士研究生,xuepeiwenl@163.com,研究方向为高功率微波效应、半导体器件 *通讯作者:孙静(1980-),男,高级工程师,willim_002@126.com,研究方向为高功率微波效应

DamagemechanismofthehighelectronmobilitytransistorinducedbyHPMfromdrainelectrode

 XUE  Pei-Wen, FANG  Jin-Yong, LI  Zhi-Peng, SUN  Jing*   

  1. ChinaAcademyofSpaceTechnology(Xi′an),Xi′an710100,China
  • Received:2016-10-25 Revised:2016-11-30 Online:2017-06-25 Published:2017-01-24

摘要: 针对典型GaAs高电子迁移率晶体管(HEMT)低噪声放大器,利用半导体仿真软件Sentaurus-TCAD建立了HEMT低噪声放大器二维电热模型,考虑高电场下的载流子迁移率退化和载流子雪崩产生效应,分析了由漏极注入高功率微波(HPM)情况下器件内部的瞬态响应,通过分析器件内部电场强度、电流密度、温度分布随信号作用时间的变化,研究了其损伤效应与机理。研究结果表明,当漏极注入幅值17.5V、频率为14.9GHz的微波信号后,峰值温度随信号作用时间的变化呈现周期性“增加—减小—增加”的规律。在正半周期降温,在负半周期升温,总体呈上升趋势,正半周电场峰值主要出现在漏极,负半周电场峰值主要出现在栅极靠漏侧,端电流在第二周期之后出现明显的双峰现象。由于热积累效应,栅极下方靠漏侧是最先发生熔融烧毁的部位,严重影响了器件的可靠性,而漏极串联电阻可以有效提高器件抗微波损伤能力。最后,对微波信号损伤的HEMT进行表面形貌失效分析,表明仿真与试验结果基本相符。

关键词: 高功率微波, 高电子迁移率晶体管, 损伤机理, 漏极, 失效分析

Abstract: Atwo-dimensionalelectro-thermalmodelofthetypicalHEMTwasestablishedbysimulationsoftwareSentaurus-TCAD.Mobilitydegradationinhighelectricfield,Avalanchegenerateeffectandself-heatingeffectwereconsidered,byanalyzingthedistributionsandvariationsoftheelectricfield,thecurrentdensityandthetemperature,adetailedinvestigationofthedamageeffectandmechanismofhighpowermicrowave(HPM)onAlGaAs/GaAspseudomorphichigh-electron-mobilitytransistor(pHEMT)undertheinjectionof14.9GHzequivalentvoltagesignalsfromthedrainelectrodewasperformed.Thesimulationresultssuggestthatintrinsicexcitation,avalanchebreakdown,thermalbreakdownallcontributetodamageprocess,thetemperaturebehavesasperiodic“increasing-decreasing-increasing”oscillationandthewholetrendcontinuouslyincreaseswithtimeanditdecreasesduringpositivehalfcycleandincreasesduringnegativecycle.Thegatecurrentdensityappearsdoublepeakphenomenonbecauseavalanchebreakdownandthermalexcitation.Heataccumulationoccursduringthenegativehalfcycleandbelowthegatenearthedrainsideismostsusceptibletoburnout.Meanwhile,thedrainterminalseriesresistancecanenhancethecapabilityofthedevicetowithstandmicrowavedamageeffectively.

Key words: highpowermicrowave, highelectronmobilitytransistor, damagemechanism, drainelectrode, failureanalysis